# Measuring Labor Demand and Supply Shocks during COVID-19

Pedro Brinca Nova SBE Joao B. Duarte Nova SBE Miguel Faria-e-Castro FRB St. Louis

GEE/GPEARI September 16, 2020

The views expressed on this presentation do not necessarily reflect the positions of the Federal Reserve Bank of St. Louis or the Federal Reserve System.

Introduction

- 1. Supply ← Household behavior
  - Increase in health risk
  - Policy
    - Containment and mitigation measures (lockdowns)
    - CARES act
- 2. Demand ← Firm behavior
  - Demand shortages (GLSW 2020; Baqaee and Farhi 2020)
    - Increase in Health risk
    - Complementarities across sectors (input-output preferences)
    - Aggregate demand
  - Supply chain disruptions
  - Policy (closures/monetary/fiscal policy)

- 1. Supply ← Household behavior
  - Increase in health risk
  - Policy
    - Containment and mitigation measures (lockdowns)
    - CARES act
- Demand ← Firm behavior
  - Demand shortages (GLSW 2020; Baqaee and Farhi 2020)
    - Increase in Health risk
    - Complementarities across sectors (input-output preferences)
    - Aggregate demand
  - Supply chain disruptions
  - Policy (closures/monetary/fiscal policy)

- 1. Supply ← Household behavior
  - Increase in health risk
  - Policy
    - Containment and mitigation measures (lockdowns)
    - CARES act
- 2. Demand ← Firm behavior
  - Demand shortages (GLSW 2020; Baqaee and Farhi 2020)
    - Increase in Health risk
    - Complementarities across sectors (input-output preferences)
    - Aggregate demand
  - Supply chain disruptions
  - Policy (closures/monetary/fiscal policy)

- 1. Supply ← Household behavior
  - Increase in health risk
  - Policy
    - Containment and mitigation measures (lockdowns)
    - CARES act
- Demand ← Firm behavior
  - Demand shortages (GLSW 2020; Baqaee and Farhi 2020)
    - Increase in Health risk
    - Complementarities across sectors (input-output preferences)
    - Aggregate demand
  - Supply chain disruptions
  - Policy (closures/monetary/fiscal policy)

- 1. Supply ← Household behavior
  - Increase in health risk
  - Policy
    - Containment and mitigation measures (lockdowns)
    - CARES act
- Demand ← Firm behavior
  - Demand shortages (GLSW 2020; Baqaee and Farhi 2020)
    - Increase in Health risk
    - Complementarities across sectors (input-output preferences)
    - Aggregate demand
  - Supply chain disruptions
  - Policy (closures/monetary/fiscal policy)

- 1. How much of the drop in hours worked is explained by shifts in labor supply and demand?
- 2. How does that vary across sectors?



#### 1. The need of useful moments and parameters to calibrate models

- How large were the shifts in labor supply and demand during COVID-19?
- We provide sectoral labor elasticities (multisector models are key to model COVID-19)

- Labor supply shocks more closely related w/ state of public health
  - Persistence linked to that of public health crisis
  - Policy recommendation: Social insurance
- Labor demand shocks more closely related w/ state of the economy
  - Potentially more persistent (job destruction, business exit)
  - Policy recommendation: Targeted stimulus

- 1. The need of useful moments and parameters to calibrate models
  - How large were the shifts in labor supply and demand during COVID-19?
  - We provide sectoral labor elasticities (multisector models are key to model COVID-19)

- Labor supply shocks more closely related w/ state of public health
  - Persistence linked to that of public health crisis
  - Policy recommendation: Social insurance
- Labor demand shocks more closely related w/ state of the economy
  - Potentially more persistent (job destruction, business exit)
  - Policy recommendation: Targeted stimulus

- 1. The need of useful moments and parameters to calibrate models
  - How large were the shifts in labor supply and demand during COVID-19?
  - We provide sectoral labor elasticities (multisector models are key to model COVID-19)
- 2. Policy guidance
  - Labor supply shocks more closely related w/ state of public health
    - Persistence linked to that of public health crisis
    - Policy recommendation: Social insurance
  - Labor demand shocks more closely related w/ state of the economy
    - Potentially more persistent (job destruction, business exit)
    - Policy recommendation: Targeted stimulus

- 1. The need of useful moments and parameters to calibrate models
  - How large were the shifts in labor supply and demand during COVID-19?
  - We provide sectoral labor elasticities (multisector models are key to model COVID-19)

- Labor supply shocks more closely related w/ state of public health
  - Persistence linked to that of public health crisis
  - Policy recommendation: Social insurance
- Labor demand shocks more closely related w/ state of the economy
  - Potentially more persistent (job destruction, business exit)
  - Policy recommendation: Targeted stimulus

- 1. The need of useful moments and parameters to calibrate models
  - How large were the shifts in labor supply and demand during COVID-19?
  - We provide sectoral labor elasticities (multisector models are key to model COVID-19)

- Labor supply shocks more closely related w/ state of public health
  - Persistence linked to that of public health crisis
  - Policy recommendation: Social insurance
- Labor demand shocks more closely related w/ state of the economy
  - Potentially more persistent (job destruction, business exit)
  - Policy recommendation: Targeted stimulus

- 1. The need of useful moments and parameters to calibrate models
  - How large were the shifts in labor supply and demand during COVID-19?
  - We provide sectoral labor elasticities (multisector models are key to model COVID-19)

- Labor supply shocks more closely related w/ state of public health
  - Persistence linked to that of public health crisis
  - Policy recommendation: Social insurance
- Labor demand shocks more closely related w/ state of the economy
  - Potentially more persistent (job destruction, business exit)
  - Policy recommendation: Targeted stimulus

#### Approach:

Measure monthly  $\underline{\textbf{labor}}$  demand and supply shocks w/ econometric model

- Using monthly hours and real wage per hour (CES from BLS)
- Estimate Bayesian SVAR  $(\Delta h_t, \Delta w_t)$  with informative prior (Baumeister & Hamilton, 2015, 2018, 2019)
  - Accounts for estimation uncertainty + uncertainty about the underlying structure of the economy
  - Prior beliefs are explicitly acknowledged: labor supply & demand elasticity estimates from literature

#### Approach:

Measure monthly <u>labor</u> demand and supply shocks w/ econometric model

- Using monthly hours and real wage per hour (CES from BLS)
- Estimate Bayesian SVAR  $(\Delta h_t, \Delta w_t)$  with informative prior (Baumeister & Hamilton, 2015, 2018, 2019)
  - Accounts for estimation uncertainty + uncertainty about the underlying structure of the economy
  - Prior beliefs are explicitly acknowledged: labor supply & demand elasticity estimates from literature

#### Approach:

Measure monthly <u>labor</u> demand and supply shocks w/ econometric model

- Using monthly hours and real wage per hour (CES from BLS)
- Estimate Bayesian SVAR  $(\Delta h_t, \Delta w_t)$  with informative prior (Baumeister & Hamilton, 2015, 2018, 2019)
  - Accounts for estimation uncertainty + uncertainty about the underlying structure of the economy
  - Prior beliefs are explicitly acknowledged: labor supply & demand elasticity estimates from literature

#### Approach:

Measure monthly <u>labor</u> demand and supply shocks w/ econometric model

- Using monthly hours and real wage per hour (CES from BLS)
- Estimate Bayesian SVAR  $(\Delta h_t, \Delta w_t)$  with informative prior (Baumeister & Hamilton, 2015, 2018, 2019)
  - Accounts for estimation uncertainty + uncertainty about the underlying structure of the economy
  - Prior beliefs are explicitly acknowledged: labor supply & demand elasticity estimates from literature

#### Approach:

- Identification of relative size of demand and supply shocks driven by:
  - Changes in hours and wages per hour
  - Ratio of labor demand and supply elasticities (prior: ratio= 1)
- Analysis by
  - 1. Sector (NAICS-2 and -3 ► NAICS-3 results )
  - 2. Occupational category (production vs. non-production)

#### Approach:

- Identification of relative size of demand and supply shocks driven by:
  - Changes in hours and wages per hour
  - Ratio of labor demand and supply elasticities (prior: ratio= 1)
- Analysis by
  - 1. Sector (NAICS-2 and -3 ► NAICS-3 results )
  - 2. Occupational category (production vs. non-production)

#### Approach:

- Identification of relative size of demand and supply shocks driven by:
  - Changes in hours and wages per hour
  - Ratio of labor demand and supply elasticities (prior: ratio= 1)
- Analysis by
  - 1. Sector (NAICS-2 and -3 ► NAICS-3 results )
  - 2. Occupational category (production vs. non-production)

- Supply accounts for 2/3 of 16.24 pp drop in the growth rate of hours worked in April 2020
- Large negative demand & supply shocks in March, Apri
- Heterogeneity across sectors:
  - 1. Leisure and Hospitality: -63.18 pp in April, 63% supply
  - 2. Utilities, Information, Financial Activities least affected
  - 3. Positive demand shocks in some of these sectors
- Validation:
  - 1. Supply shocks correlate strongly with measures of telework
  - 2. No correlation for "normal" months
  - 3. Low correlation w/ demand shocks

- Supply accounts for 2/3 of 16.24 pp drop in the growth rate of hours worked in April 2020
- Large negative demand & supply shocks in March, April
- Heterogeneity across sectors:
  - 1. Leisure and Hospitality: -63.18 pp in April, 63% supply
  - 2. Utilities, Information, Financial Activities least affected
  - 3. Positive demand shocks in some of these sectors
- Validation:
  - 1. Supply shocks correlate strongly with measures of telework
  - 2. No correlation for "normal" months
  - 3. Low correlation w/ demand shocks

- Supply accounts for 2/3 of 16.24 pp drop in the growth rate of hours worked in April 2020
- Large negative demand & supply shocks in March, April
- Heterogeneity across sectors:
  - 1. Leisure and Hospitality: -63.18 pp in April, 63% supply
  - 2. Utilities, Information, Financial Activities least affected
  - 3. Positive demand shocks in some of these sectors
- Validation:
  - 1. Supply shocks correlate strongly with measures of telework
  - 2. No correlation for "normal" months
  - 3. Low correlation w/ demand shocks

- Supply accounts for 2/3 of 16.24 pp drop in the growth rate of hours worked in April 2020
- Large negative demand & supply shocks in March, April
- Heterogeneity across sectors:
  - 1. Leisure and Hospitality: -63.18 pp in April, 63% supply
  - 2. Utilities, Information, Financial Activities least affected
  - 3. Positive demand shocks in some of these sectors
- Validation:
  - 1. Supply shocks correlate strongly with measures of telework
  - 2. No correlation for "normal" months
  - 3. Low correlation w/ demand shocks

#### Relation to the Literature

1. COVID shock in multi-sector economies

```
Bodenstein, Corsetti, & Guerrieri (2020); Barrot, Grassi, & Sauvagnat (2020); Faria-e-Castro (2020); . . .
```

Effects of voluntary & mandated confinement
 Eichenbaum, Rebelo & Trabandt (2020); Kaplan, Moll, and Violante (2020); . . .

Supply vs. demand shocks
 Guerrieri, Lorenzoni, Straub, & Werning (2020); Baqaee & Fahri (2020); del
 Rio-Chanona et al. (2020); ...

#### **Outline of the Talk**

1. Econometric model

2. Data

- 3. Results: estimation & decomposition
- 4. Validation
- 5. Conclusion

## Model

#### **Econometric Model**

Framework based on Baumeister & Hamilton (2015, ECTA)

- Sector  $l \in L$ , month  $t \in T$
- Growth rate of wages  $\Delta w_t^I$ , hours  $\Delta h_t^I$
- Observables

$$\mathbf{y}_t^I = (\Delta w_t^I, \Delta h_t^I)$$

SVAR for sector /

$$\mathbf{A}^{\prime}\mathbf{y}_{t}^{\prime}=\mathbf{B}_{0}^{\prime}+\mathbf{B}^{\prime}(L)\mathbf{y}_{t-1}^{\prime}+\varepsilon_{t}^{\prime}$$

Structural demand and supply shocks

$$oldsymbol{arepsilon}_t^I = (arepsilon_{d,t}^I, arepsilon_{s,t}^I) \sim \mathcal{N}(oldsymbol{0}, oldsymbol{\mathcal{D}})$$

#### Identification

Assume that

$$\mathbf{A}^{l} = \begin{bmatrix} -\beta^{l} & 1\\ -\alpha^{l} & 1 \end{bmatrix}$$
$$\alpha^{l} \ge 0$$
$$\beta^{l} \le 0$$

- $\alpha_I \geq 0$ : supply slopes up
- $\beta_I \leq 0$ : demand slopes down
- Prior beliefs over  $\{\alpha^I,\beta^I\}_{I\in L}$  incorporate these sign restrictions

Write the SVAR as supply/demand system

$$\begin{split} \Delta h_t^I &= b_{20}^{s,l} + \alpha^I \Delta w_t^I + \sum_{i=1}^m b_{21}^{i,s,l} \Delta w_{t-i}^I + \sum_{i=1}^m b_{22}^{i,s,l} \Delta h_{t-i}^I + \varepsilon_{s,t}^I \\ \Delta h_t^I &= b_{10}^{d,I} + \beta^I \Delta w_t^I + \sum_{i=1}^m b_{11}^{i,d,I} \Delta w_{t-i}^I + \sum_{i=1}^m b_{12}^{i,d,I} \Delta h_{t-i}^I + \varepsilon_{d,t}^I \end{split}$$

$$\begin{split} \Delta h_t^l &= \left(\frac{1}{1 - \left(\frac{\alpha^l}{\beta^l}\right)^{-1}}\right) \varepsilon_{d,t}^l + \left(\frac{1}{1 - \frac{\alpha^l}{\beta^l}}\right) \varepsilon_{s,t}^l \\ \Delta w_t^l &= \left(\frac{1/\beta^l}{\frac{\alpha^l}{\beta^l} - 1}\right) \varepsilon_{d,t}^l + \left(\frac{1/\beta^l}{1 - \frac{\alpha^l}{\beta^l}}\right) \varepsilon_{s,t}^l \end{split}$$

Write the SVAR as supply/demand system

$$\begin{split} \Delta h_t^l &= b_{20}^{s,l} + \alpha^l \Delta w_t^l + \sum_{i=1}^m b_{21}^{i,s,l} \Delta w_{t-i}^l + \sum_{i=1}^m b_{22}^{i,s,l} \Delta h_{t-i}^l + \varepsilon_{s,t}^l \\ \Delta h_t^l &= b_{10}^{d,l} + \beta^l \Delta w_t^l + \sum_{i=1}^m b_{11}^{i,d,l} \Delta w_{t-i}^l + \sum_{i=1}^m b_{12}^{i,d,l} \Delta h_{t-i}^l + \varepsilon_{d,t}^l \end{split}$$

$$\begin{split} \Delta h_t^l &= \left(\frac{1}{1 - \left(\frac{\alpha^l}{\beta^l}\right)^{-1}}\right) \varepsilon_{d,t}^l + \left(\frac{1}{1 - \frac{\alpha^l}{\beta^l}}\right) \varepsilon_{s,t}^l \\ \Delta w_t^l &= \left(\frac{1/\beta^l}{\frac{\alpha^l}{\beta^l} - 1}\right) \varepsilon_{d,t}^l + \left(\frac{1/\beta^l}{1 - \frac{\alpha^l}{\beta^l}}\right) \varepsilon_{s,t}^l \end{split}$$

Write the SVAR as supply/demand system

$$\begin{split} \Delta h_t^l &= b_{20}^{s,l} + \alpha^l \Delta w_t^l + \sum_{i=1}^m b_{21}^{i,s,l} \Delta w_{t-i}^l + \sum_{i=1}^m b_{22}^{i,s,l} \Delta h_{t-i}^l + \varepsilon_{s,t}^l \\ \Delta h_t^l &= b_{10}^{d,l} + \beta^l \Delta w_t^l + \sum_{i=1}^m b_{11}^{i,d,l} \Delta w_{t-i}^l + \sum_{i=1}^m b_{12}^{i,d,l} \Delta h_{t-i}^l + \varepsilon_{d,t}^l \end{split}$$

$$\begin{split} \Delta h_t^l &= \left(\frac{1}{1 - \left(\frac{\alpha^l}{\beta^l}\right)^{-1}}\right) \varepsilon_{d,t}^l + \left(\frac{1}{1 - \frac{\alpha^l}{\beta^l}}\right) \varepsilon_{s,t}^l \\ \Delta w_t^l &= \left(\frac{1/\beta^l}{\frac{\alpha^l}{\beta^l} - 1}\right) \varepsilon_{d,t}^l + \left(\frac{1/\beta^l}{1 - \frac{\alpha^l}{\beta^l}}\right) \varepsilon_{s,t}^l \end{split}$$

$$\begin{split} \Delta h_t^l &= \left(\frac{1}{1 - \left(\frac{\alpha^l}{\beta^l}\right)^{-1}}\right) \varepsilon_{d,t}^l + \left(\frac{1}{1 - \frac{\alpha^l}{\beta^l}}\right) \varepsilon_{s,t}^l \\ \Delta w_t^l &= \left(\frac{1/\beta^l}{\frac{\alpha^l}{\beta^l} - 1}\right) \varepsilon_{d,t}^l + \left(\frac{1/\beta^l}{1 - \frac{\alpha^l}{\beta^l}}\right) \varepsilon_{s,t}^l \end{split}$$

- Assuming  $\beta' < 0, \alpha' > 0$ , we get:
  - 1.  $\frac{\partial \Delta h_t^l}{\partial \varepsilon_{d,t}^l} > 0$  and  $\frac{\partial \Delta h_t^l}{\partial \varepsilon_{s,t}^l} > 0$
  - $2. \quad \frac{\partial \Delta w_t^I}{\partial \varepsilon_{d,t}^I} > 0 \text{ and } \frac{\partial \Delta w_t^I}{\partial \varepsilon_{s,t}^I} < 0$

$$\Delta h_t^l = \underbrace{\left(\frac{1}{1 - \left(\frac{\alpha^l}{\beta^l}\right)^{-1}}\right)}_{>0} \varepsilon_{d,t}^l + \left(\frac{1}{1 - \frac{\alpha^l}{\beta^l}}\right) \varepsilon_{s,t}^l$$

$$\Delta w_t^l = \underbrace{\left(\frac{1/\beta^l}{\frac{\alpha^l}{\beta^l} - 1}\right)}_{>0} \varepsilon_{d,t}^l + \left(\frac{1/\beta^l}{1 - \frac{\alpha^l}{\beta^l}}\right) \varepsilon_{s,t}^l$$

- Assuming  $\beta^I < 0, \alpha^I > 0$ , we get:
  - 1.  $\frac{\partial \Delta h_t^l}{\partial \varepsilon_{d,t}^l} > 0$  and  $\frac{\partial \Delta h_t^l}{\partial \varepsilon_{s,t}^l} > 0$
  - $2. \quad \frac{\partial \Delta w_t^I}{\partial \varepsilon_{d,t}^I} > 0 \text{ and } \frac{\partial \Delta w_t^I}{\partial \varepsilon_{s,t}^I} < 0$

$$\begin{split} \Delta h_t^l &= \left(\frac{1}{1 - \left(\frac{\alpha^l}{\beta^l}\right)^{-1}}\right) \varepsilon_{d,t}^l + \underbrace{\left(\frac{1}{1 - \frac{\alpha^l}{\beta^l}}\right)}_{> 0} \varepsilon_{\mathbf{s},t}^l \\ \Delta w_t^l &= \left(\frac{1/\beta^l}{\frac{\alpha^l}{\beta^l} - 1}\right) \varepsilon_{d,t}^l + \underbrace{\left(\frac{1/\beta^l}{1 - \frac{\alpha^l}{\beta^l}}\right)}_{< 0} \varepsilon_{\mathbf{s},t}^l \end{split}$$

- Assuming  $\beta' < 0, \alpha' > 0$ , we get:
  - 1.  $\frac{\partial \Delta h_t^l}{\partial \varepsilon_{d,t}^l} > 0$  and  $\frac{\partial \Delta h_t^l}{\partial \varepsilon_{s,t}^l} > 0$
  - 2.  $\frac{\partial \Delta w_t^l}{\partial \varepsilon_{d,t}^l} > 0$  and  $\frac{\partial \Delta w_t^l}{\partial \varepsilon_{s,t}^l} < 0$

#### **Estimation**

Reduced form model

$$\boldsymbol{y}_t^I = \Phi_0^I + \Phi^I(L)\boldsymbol{y}_{t-1}^I + \boldsymbol{u}_t^I$$

where

$$\begin{aligned} \Phi_0' &= (\mathbf{A}^l)^{-1} \mathbf{B}_0^l \\ \Phi^l(L) &= (\mathbf{A}^l)^{-1} \mathbf{B}^l(L) \\ \mathbf{u}_t' &= (\mathbf{A}^l)^{-1} \varepsilon_t^l \\ E[\mathbf{u}_t^l(\mathbf{u}_t^l)^l] &= \Omega = (\mathbf{A}^l)^{-1} \mathbf{D}((\mathbf{A}^l)^{-1})^l \end{aligned}$$

Joint density for prior beliefs over parameter values:

$$p(\boldsymbol{A}, \boldsymbol{D}, \boldsymbol{B}) = p(\boldsymbol{A})p(\boldsymbol{D}|\boldsymbol{A})p(\boldsymbol{B}|\boldsymbol{A}, \boldsymbol{D})$$

# Priors (BH (2015, ECTA), BH (2018, JME), BH (2019, AER))

#### 1. p(A)

■ Encompass estimates from micro & macro lit. (Lichter et al., 2015)

```
prior for \alpha' \sim t(0.6, 0.6, 3), 90% of mass on [0.1, 2.2] prior for \beta' \sim t(-0.6, 0.6, 3), 90% of mass on [-2.2, -0.1]
```

• Same prior for all sectors  $I \in L$ 

#### 2. p(D|A)

- gamma distribution w/ shape  $\kappa_i = 2$  and scale  $\tau_i$
- set  $\kappa_i/\tau_i$  to match precision of structural shocks from univariate 4-lag autoregs under **A**
- 3. p(B|A, D)
  - set to conform to Minnesota priors (Sims & Zha, 1998) on reduced form coefs. Φ

#### **Posteriors**

Posterior given by

$$p(\boldsymbol{A}, \boldsymbol{D}, \boldsymbol{B}|\boldsymbol{Y}_T) = p(\boldsymbol{A}|\boldsymbol{Y}_T)p(\boldsymbol{D}|\boldsymbol{A}, \boldsymbol{Y}_T)p(\boldsymbol{B}|\boldsymbol{A}, \boldsymbol{D}, \boldsymbol{Y}_T)$$

- Natural conjugacy:
  - $p(B|A, D, Y_T)$  follows multivariate normal
  - $p(D|A, Y_T)$  follows gamma distribution
- $p(\mathbf{A}|\mathbf{Y}_T)$  has no closed form distribution, use Metropolis-Hastings to draw from it

Other estimation details:

• Lag length set at m = 4 based on Akaike IC

# Data

#### Data

- Current Employment Statistics (CES) from the Bureau of Labor Statistics (BLS)
- Monthly data on hours worked and average hourly wages by sector, March 2006-May 2020
- 14 aggregate sectors, roughly map to NAICS-2
- Estimate SVAR until February 2020, use estimated model+data to estimate shocks for March-May 2020

# **Estimation Results**

# **Estimation Results: Total Private Employment**



#### Estimated Shocks: until February 2020



### **Estimated Shocks: full sample**



**Shock Decomposition** 

# Shock Decomposition, March 2020



# Shock Decomposition, March 2020

- Total private: −2.59 pp, supply accounts for 64.8%
- Leisure and Hospitality most negatively affected sector (−9.55, of which 59% supply)
- Least-affected sectors: Wholesale Trade (-0.06 pp), Financial Activities (-0.09 pp), Information (+0.16 pp)
- Positive demand shocks: Information, Retail Trade, Wholesale Trade, Construction
- Very different from March 2019 → March 2019



# **Shock Decomposition, April 2020**



### Shock Decomposition, April 2020

- Combined effect: -16.24 pp, supply accounted for 68.8%
- Leisure and Hospitality most-affected sector (-63.17 pp, of which 63% supply)
- Least-affected sectors: Utilities (+0.09 pp), Financial Activities (-3.06 pp), Information (-8.89 pp)
- Sectors where demand was relevant: Manufacturing (40%), Information (40%), Education and Health Services (45%)
- Sectors not directly exposed to lockdown measures more affected by demand

# **Shock Decomposition, May 2020**



# \_\_\_\_

**Challenges and Robustness** 

# **Empirical Challenges**

Large unprecedented shock, may threaten some important assumptions

- 1. Gaussian errors, needed to construct likelihood
- 2. Stationarity of residuals, needed for the Wold decomposition
- 3. Model linearity (structural breaks, non-constant elasticities...)
- (1) and (2) addressed by estimating model up to February 2020
- (3) harder to address; validate shocks w/ external measures

#### Other challenges:

- 4. Quality of (preliminary) BLS data
- 5. Composition effects

# **Empirical Challenges**

Large unprecedented shock, may threaten some important assumptions

- 1. Gaussian errors, needed to construct likelihood
- 2. Stationarity of residuals, needed for the Wold decomposition
- 3. Model linearity (structural breaks, non-constant elasticities...)
- (1) and (2) addressed by estimating model up to February 2020
- (3) harder to address; validate shocks w/ external measures

#### Other challenges:

- 4. Quality of (preliminary) BLS data
- 5. Composition effects

# **Empirical Challenges**

Large unprecedented shock, may threaten some important assumptions

- 1. Gaussian errors, needed to construct likelihood
- 2. Stationarity of residuals, needed for the Wold decomposition
- 3. Model linearity (structural breaks, non-constant elasticities...)
- (1) and (2) addressed by estimating model up to February 2020
- (3) harder to address; validate shocks w/ external measures

#### Other challenges:

- 4. Quality of (preliminary) BLS data
- 5. Composition effects

#### Robustness I: external validation

Telework measure from Dingel & Neiman (2020)



No significant relationship in other months April 2019

#### Robustness I: external validation

#### Removing Leisure and Hospitality



# Robustness II: composition effects

- Job losses concentrated in low-paying jobs (i.e., Mongey et al. 2020)
- Negative labor demand shock leading to destruction of low-wage jobs may "look like" a negative supply shock
- Re-estimate VAR on data for "production and non-supervisory" and "supervisory" employees
- Results for "production and non-supervisory" employees change little

# Robustness II: composition effects, April 2020



#### Conclusion

- Econometric model of the labor market to decompose supply & demand in March-May 2020
- 2/3 of the fall in hours during March & April 2020 attributable to negative supply shocks
- Contributions:
  - 1. Provide useful moments to calibrate/discipline models
  - 2. Important for the design of public policies (targeted policies, etc.)
- In progress:
  - MSA-level analysis
  - Effects of UI expansion
  - Demand vs. "Keynesian supply shocks" (Guerrieri et al., 2020)

### Identification









#### Identification





#### (b) Equilibrium at t=1



### **Identification - Hours Decomposition**

(a) A) Depends on new wage-hours locus



**(b)** B) Depends on relative labor elasticities



# **Identification - Prior**



# Shock Decomposition, March 2019





# Prior and posterior distribution of labor demand and supply elasticities by sector (1/4)





# Prior and posterior distribution of labor demand and supply elasticities by sector (2/4)





# Prior and posterior distribution of labor demand and supply elasticities by sector (3/4)

(a) Information (b) Financial Activities Prior and posterior for a 0.8 0.8 0.8 0.8 0.6 0.6 0.6 0.6 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 -2 (c) Professional and Business Services (d) Education and Health Services Prior and posterior for 6 Prior and posterior for a Prior and posterior for 6 Prior and posterior for 0.8 0.8 0.6 0.6 0.4 0.4 0.5 0.5 0.2 0.2



# Prior and posterior distribution of labor demand and supply elasticities by sector (4/4)

(a) Leisure and Hospitality



#### (b) Other Services





# **Posterior Estimates**

| Sector                             |         | $\beta^I$ (demand | )        | $\alpha^I$ (supply) |         |        |  |
|------------------------------------|---------|-------------------|----------|---------------------|---------|--------|--|
|                                    | p5      | p50               | p95      | p5                  | p50     | p95    |  |
| Mining and Logging                 | -3.4985 | -1.4533           | -0.57036 | 0.51094             | 1.3784  | 3.331  |  |
| Utilities                          | -2.7957 | -1.0508           | -0.2748  | 0.72259             | 1.3686  | 2.6255 |  |
| Construction                       | -14.443 | -4.4111           | -0.70444 | 0.45431             | 2.3951  | 16.097 |  |
| Manufacturing                      | -3.813  | -1.4151           | -0.45704 | 0.8067              | 1.8056  | 3.8972 |  |
| Wholesale Trade                    | -1.9119 | -0.74404          | -0.21297 | 0.25625             | 0.73813 | 1.7147 |  |
| Retail Trade                       | -4.6419 | -2.4711           | -1.2466  | 0.32368             | 1.2577  | 3.7929 |  |
| Transportation and Warehousing     | -2.2208 | -1.2205           | -0.67791 | 0.2437              | 0.95951 | 2.4964 |  |
| Information                        | -2.0643 | -0.90012          | -0.34388 | 0.32847             | 0.92223 | 2.1588 |  |
| Financial Activities               | -2.1287 | -1.0533           | -0.49371 | 0.26154             | 0.93418 | 2.3441 |  |
| Professional and Business Services | -2.9516 | -1.4611           | -0.72686 | 0.34512             | 1.1377  | 2.9259 |  |
| Education and Health Services      | -2.2529 | -1.0778           | -0.47521 | 0.3506              | 1.0614  | 2.5915 |  |
| Leisure and Hospitality            | -4.4276 | -1.9899           | -0.84574 | 0.45443             | 1.4753  | 4.1884 |  |
| Other Services                     | -2.9106 | -1.4046           | -0.63227 | 0.42351             | 1.193   | 2.8501 |  |
| Total Private                      | -2.6593 | -1.1375           | -0.40432 | 0.53653             | 1.2244  | 2.6541 |  |

▶ Back

# Shock Decomposition NAICS-3, March 2020



# Shock Decomposition, April 2020

|                             | Demand |        |       | Supply |        |        | Difference 68%    |
|-----------------------------|--------|--------|-------|--------|--------|--------|-------------------|
|                             |        |        |       |        |        |        | Credible Interval |
| Sector                      | 50p    | 2.5p   | 97.5p | 50p    | 2.5p   | 97.5p  |                   |
| Total Private               | -5.06  | -11.28 | -0.31 | -11.18 | -15.94 | -4.97  | [-12.204, 0.5492] |
| Mining and Logging          | -4.78  | -9.50  | -0.84 | -7.34  | -11.32 | -2.62  | [-8.076, 2.293]   |
| Construction                | -3.65  | -12.78 | -0.32 | -13.47 | -16.82 | -4.33  | [-14.443, -0.375] |
| Manufacturing               | -6.36  | -12.93 | -1.14 | -9.89  | -15.13 | -3.32  | [-10.365, 3.447]  |
| Wholesale Trade             | -3.82  | -8.23  | -0.37 | -5.66  | -9.10  | -1.25  | [-6.556, 3.101]   |
| Retail Trade                | -3.65  | -9.25  | -0.04 | -10.82 | -14.43 | -5.23  | [-12.276, -0.285] |
| Transport. & Warehousing    | -3.61  | -9.06  | -0.01 | -9.26  | -12.85 | -3.81  | [-9.090, 0.655]   |
| Utilities                   | 1.17   | 0.41   | 1.49  | -1.08  | -1.40  | -0.32  | [-2.467, -1.416]  |
| Information                 | -3.51  | -6.95  | -0.63 | -5.39  | -8.26  | -1.95  | [-5.545, 1.967]   |
| Financial Activities        | -0.34  | -2.00  | 0.52  | -2.72  | -3.59  | -1.05  | [-3.241, -0.610]  |
| Prof. and Business Services | -3.29  | -8.05  | -0.15 | -8.31  | -11.44 | -3.53  | [-9.086, -0.780]  |
| Education and Health        | -5.47  | -10.77 | -0.63 | -6.92  | -11.76 | -1.62  | [-8.005, 5.076]   |
| Leisure and Hospitality     | -23.26 | -46.70 | -3.63 | -39.92 | -59.55 | -16.47 | [-38.955, 9.722]  |
| Other Services              | -6.32  | -14.23 | -0.48 | -15.39 | -21.24 | -7.47  | [-16.701, -0.876] |

▶ Back

# Shock Decomposition NAICS-3, April 2020



# Estimated Shocks vs. Telework Measure, April 2019



### Estimated Shocks vs. Telework Measure, March 2020



# Estimated Shocks vs. Telework Measure, May 2020

