Gazelles: Drivers of Exceptional Job Creation A dynamic probit approach using Portuguese firm-level data

Francisco Rodrigues ¹ Nuno Tavares ² Gabriel Barros ²

¹Nova SBE

²Gabinete de Estratégia e Estudos (GEE)

October 30, 2020

Outline

Introduction

Data

Empirical Approach

Results

Conclusions

★□>
★□>
★□>
■

Introduction - What are Gazelles and why are they relevant?

- Birch first noted that a small group of high-growth firms (HGFs) generated most of the new net jobs (D. L. Birch 1979). He named this special "breed" of firms as Gazelles.
 - In the US it was found that 4% of ongoing firms created 60% of all new jobs (D. L. Birch and Medoff 1994);
 - In the UK it was found that 4% of firms created approximately 50% of jobs (Storey 1994);
 - In Sweden it was showed that 6% of the fastest growing firms contributed to 42% of jobs in the 2005-2008 period (Daunfeldt, Halvarsson, Johansson, et al. 2012).
- Gazelles are particularly relevant, as firm growth rates have been shown to be heavy-tailed - most firms do not grow.

Introduction - Are Gazelles different?

- Related literature has been suggesting some distinctive characteristics of Gazelles:
 - They tend to be **younger** but **not necessarily small** (Acs and Mueller 2008);
 - 2. They are found to **export more** than their slow-growth counterparts (Parsley and Halabisky 2008);
 - 3. They can be found throughout **all the sectors** in the economy, **not only in high-technology sectors**;
 - 4. They tend to invest more in R&D (Segarra and Teruel 2014).
 - High-growth is not persistent over time (although high-growth persistence seems to depend on the choice of the growth measurement (Hölzl 2013))

Introduction - Questions addressed

- What makes a Gazelle?
 - We apply a multivariate framework in order to estimate the partial impact of an extended set of factors on the probability of firms attaining fast-growth.

What is role of credit access and human capital in determining high-growth events?

These are particularly important in the Portuguese case.

- Are high-growth episodes persistent?
 - This result may be relevant in terms of policy.

Data

- Our empirical strategy relies on the use firm-level data, for the 2006-2017 period, provided by Banco de Portugal (BdP) through the Central de Balanços (CB) data set.
- The initial data set was submitted to several consistency procedures:
 - We required coherent reporting of fundamental figures (assets, liabilities, employment, labor expenses).

Only companies employing at least five employees were considered.

Data - Gazelle Criterion

- We based our Gazelle criterion on the seminal work of Birch (Birch 1987), which identifies exceptional job creation performance as the most relevant economic characteristic of Gazelles.
- We consider the Birch-Schreyer (BS) indicator (Schreyer 2000), which accounts for bias towards smaller firms:

$$BS_t = \frac{E_t}{E_{t-k}} \left(E_t - E_{t-k} \right)$$

- E_t is the **employment level** at the end of period t and k = 1.
- Gazelles are those whose growth indicator scores above the upper 10% of the BS indicator distribution. (Almus 2002), (Lopez-Garcia and Puente 2012)

By Size			
	Gazelles	Rest	Total share of size class
Micro	13.8%	55.3%	52.2%
Small	65.1%	39.9%	41.8%
Medium	18.0%	4.3%	5.3%
Large	3.1%	0.5%	0.7%
By Region			
	Gazelles	Rest	Total share of region
North	34.3%	33.2%	33.3%
Centre	21.1%	23.5%	23.4%
Alentejo	6.0%	7.2%	7.0%
Algarve	6.2%	5.7%	5.7%
Lisbon	29.4%	27.3%	27.4%
Azores	1.3%	1.1%	1.1%
Madeira	1.7%	2.1%	2.1%
By Sector			
	Gazelles	Rest	Total share of sector
Manufacturing	25.9%	25.0%	25.1%
Construction	16.1%	14.6%	16.0%
Services	54.6%	55.7%	55.6%

Table 1: Distribution of Gazelles by class size, region and sector

Source: Central de Balanços - BdP and authors calculations

Empirical Approach - Identification Strategy

We propose to model the probability of a given firm to become a Gazelle conditional on a set of *ex-ante* explanatory variables:

$$P(HGF_{i,t} = 1 | HGF_i, \mathbf{x}_i, e_i) = \Phi\left(\rho HGF_{i,t-1} + \beta \mathbf{x}'_{i,t-1} + e_i\right)$$

- where Φ(.) is the NCDF; x_i = (x_{i,t-1},...,x_{i,0}), the covariates vector, for all t; and likewise, HGF_i = (HGF_{i,t-1},...,HGF_{i,0}).
- e_i captures firms' unobserved heterogeneity modelled as:

$$e_i = g(HGF_{i,0}, x_{i,0}, \bar{x}_i)$$

The model is estimated with a parsimonious version of Wooldridge's approach (Wooldridge 2005) based on Rabe-Hesketh and Skrondal 2013.

Empirical Approach - Baseline covariates

- All explanatory variables used in the model are taken at the beginning of the growth period.
 - ► HGF_(t-1/t-2): past instances of the "Gazelle" status are used to access growth persistency.
 - Wage premium: used to proxy human capital and defined as the ratio of average hourly wage over the average of this figure for the same 2-digit sector.
 - Share of full-time employees: used to eliminate the effect of contract mix on wage premium.
 - Age: number of years since foundation.
 - Debt Ratio: used to proxy credit access and defined as the ratio of total outstanding debt over liabilities. A quadratic term is included to allow for non-linear effects.
 - Financial Autonomy: the degree of capitalization, given by equity over total assets.

Empirical Approach - Extensions and controls

- We extend our baseline estimation by adding further covariates:
 - Workers and management Human Capital: Using the wage bill for board members and non-board members, we disentangle the effect of human capital.
 - R&D Emp. Share: measure of R&D intensity identified as the share of employees allocated to R&D activities on total employment.
 - Exporter Status: measure of internationalization interacted with firm age.

We control for time invariant factors such as sector and region, and also allow for year fixed effects.

	HGF $(t/t-1)$	Remaining Firms
HGF $(t-1/t-2)$	17.8%	6.3%
Wage Premium $_{t-1}$	1.07	0.98
Share of Full Time Emp $_{t-1}$	97.1%	97.7%
Age _{t-1}	14.7	17.4
Debt Ratio $_{t-1}$	33.8%	33.3%
Financial Autonomy $_{t-1}$	28.9%	30.7%
R&D Emp. Share $_{t-1}$	1.0%	0.6%
Exporter $_{t-1}$	35.7%	26.2%

Table 2: Summary statistics of covariates by group

Source: Central de Balanços - BdP and authors calculations

Covariates	Simple Probit	Model 2
HGF $(t-1/t-2)$	0.006 ***	-0.0355 ***
Ln (Wage Premium) $_{t-1}$	0.015 ***	0.0094 ***
Share of full time employees $t-1$	-0.0129	0.0206
Age _{t-1}	-0.0016 ***	-0.0071 ***
Debt Ratio $t-1$	0.0738 ***	-0.0193
Debt Ratio Sq $_{t-1}$	-0.0876 ***	0.0057
Financial Autonomy $_{t-1}$	0.0038	0.0245 ***
Sector dummies	yes	yes
Region dummies	yes	yes
Year dummies	yes	yes
Firm heterogeneity Number of observations	no 186,741	yes 186,741

Table 3: Results - Firm Unobserved Heterogeneity

*** p<0.01, ** p<0.05, * p<0.1

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへで

Firm Unobserved Heterogeneity

- Dynamic process: Unlikely to persist as exceptional job creator. ("One-hit wonders"?)
- Financial Debt: Access to credit has an insignificant role. Suggesting lack of access to credit did not hinder episodes of exceptional growth.
- Financial Autonomy: More capitalized firms are more likely to excel in job creation.

Human Capital

How to disentangle HC of workers and board-members?

- ► The issue: hours of work are not disaggregated. Average wage for both groups is unavailable.
- Overall wage bill of board and non-board members is sensitive to firm size.
- ▶ We thus consider the *"wage bill premium"* on same sized firms in the same 2-digit sector.

Table 4: Results - Human Capital

Covariates	Model 2	Model 3
HGF $(t-1/t-2)$	-0.0355 ***	-0.0371 ***
Ln (Wage Premium) $_{t-1}$	0.0094 ***	
Share of full time employees $t-1$	0.0206	0.0034
Age _{t-1}	-0.0071 ***	-0.0060 ***
Debt Ratio _{t-1}	-0.0193	-0.0210
Debt Ratio Sq $_{t-1}$	0.0057	0.0059
Financial Autonomy $t-1$	0.0245 ***	0.0248 ***
Ln (Wage Bill Premium Workers) $_{t-1}$		0.2695 ***
Ln (Wage Bill Premium Board) $_{t-1}$		0.0376 ***
Sector dummies	yes	yes
Region dummies	yes	yes
Year dummies	yes	yes
Firm heterogeneity	yes	yes
Number of observations	152,392	152,392

Table 5: Results - Innovative Capacity

Covariates	Model 3	Model 4
HGF $(t-1/t-2)$	-0.0371 ***	-0.0371 ***
Share of full time employees $t-1$	0.0034	0.0036
Age _{t-1}	-0.0060 ***	-0.0060 ***
Debt Ratio t-1	-0.0210	-0.0212
Debt Ratio Sq $_{t-1}$	0.0059	0.0061
Financial Autonomy $t-1$	0.0248 ***	0.0247 ***
Ln (Wage Bill Premium Workers) $_{t-1}$	0.2695 ***	0.2691 ***
Ln (Wage Bill Premium Board) $_{t-1}$	0.0376 ***	0.0378 ***
R&D Emp. Share $_{t-1}$		0.043 **
Sector dummies	yes	yes
Region dummies	yes	yes
Year dummies	yes	yes
Firm heterogeneity	yes	yes
Number of observations	152,392	152,392

Table 6: Results - Internationalization

Covariates	Model 3	Model 5
HGF $(t-1/t-2)$	-0.0371 ***	-0.0369 ***
Share of full time employees $t-1$	0.0034	0.0030
Age t-1	-0.0060 ***	-0.0051 ***
Debt Ratio _{t-1}	-0.0210	-0.0208
Debt Ratio Sq $t-1$	0.0059	0.0060
Financial Autonomy $t-1$	0.0248 ***	0.0252 ***
Ln (Wage Bill Premium Workers) $_{t-1}$	0.2695 ***	0.2707 ***
Ln (Wage Bill Premium Board) $_{t-1}$	0.0376 ***	0.0379 **
Exporter t-1		-0.011 ***
Exporter $_{t-1} \times Age_{t-1}$		0.0004 **
Sector dummies	ves	ves
Region dummies	yes	yes
Year dummies	yes	yes
Firm heterogeneity	yes	yes
Number of observations	152,392	152,392

Table 7: Results - Full model

Covariates	$HGF_{(^{t/t-1})}$
HGF $(t-1/t-2)$	-0.0369 ***
Share of full time employees $t-1$	0.0032
Age t-1	-0.0051 ***
Debt Ratio $_{t-1}$	-0.0210
Debt Ratio Sq $_{t-1}$	0.0062
Financial Autonomy $_{t-1}$	0.0251 ***
Ln (Wage Bill Premium Workers) $_{t-1}$	0.2702 ***
Ln (Wage Bill Premium Board) $_{t-1}$	0.0381 ***
R&D Emp. Share _{t-1}	0.042 **
Exporter $t-1$	-0.011 ***
Exporter $_{t-1} \times Age_{t-1}$	0.0004 **
Sector dummies	Ves
Region dummies	ves
Year dummies	ves
Firm heterogeneity	yes
Number of observations	152,392

Full model

- Innovative Capacity: Although rare, R&D effort plays a significant role in explaining high growth.
- Internationalization: Exposure to foreign markets pertain betters odds to excel at job creation for more mature firms. The benefits seem to be linked to a learning-by-doing phenomenon.

Table 8: Results - Average Growth

Covariates	$HGF_{(t/t-1)}$	BS indicato
HGF $(t-1/t-2)$	-0.0369 ***	0.0220
Share of full time employees $t-1$	0.0032	16.6245 ***
Age _{t-1}	-0.0051 ***	-1.0558 ***
Debt Ratio t-1	-0.0210	-1.6636
Debt Ratio Sq $t-1$	0.0062	0.703
Financial Autonomy t-1	0.0251 ***	1.7163
Ln (Wage Bill Premium Workers) $_{t-1}$	0.2702 ***	23.0860 ***
Ln (Wage Bill Premium Board) $_{t-1}$	0.0381 ***	17.3345 ***
R&D Emp. Share $_{t-1}$	0.042 **	0.7111
Exporter t-1	-0.011 ***	0.4287
Exporter $_{t-1} \times Age_{t-1}$	0.0004 **	0.0318

Conclusions

- ► High-growth is **unlikely to persist** for a given firm.
- Human capital is an important determinant for high-growth. Particularly so for non-executive workers.
- > Younger firms are more likely to grow at the fastest pace.
- Once firm heterogeneity is accounted for, restrictions to credit did not hinder Gazelles from full-filling their growth potential.
- Evidence suggests that innovative capacity is crucial in outstanding job creation episodes.
- Benefits from **international exposure** take time to realize.
- Evidence also suggests nonlinearities in the growth process of firms (high-growth v.s. average growth).

References I

Acs, Zoltan J and Pamela Mueller (2008). "Employment effects of business dynamics: Mice, gazelles and elephants". In: Small Business Economics 30.1, pp. 85–100. Almus, Matthias (2002). "What characterizes a fast-growing firm?" In: Applied Economics 34.12, pp. 1497–1508. Birch (1987). Job creation in America. Birch, David L (1979). The job generation process: MIT program on neighborhood and regional change. Birch, David L and James Medoff (1994). "Gazelles". In: Labor markets, employment policy and job creation 159-167. Daunfeldt, Sven-Olov, Daniel Halvarsson, Dan Johansson, et al. (2012). A cautionary note on using the *Eurostat-OECD definition of high-growth firms.* Tech. rep. HUI Research.

References II

- Hölzl, Werner (2013). "Persistence, survival, and growth: a closer look at 20 years of fast-growing firms in Austria". In: *Industrial and corporate change* 23.1, pp. 199–231.
- Lopez-Garcia, Paloma and Sergio Puente (2012). "What makes a high-growth firm? A dynamic probit analysis using Spanish firm-level data". In: *Small Business Economics* 39.4, pp. 1029–1041.
- Parsley, Chris and David Halabisky (2008). Profile of growth firms: A summary of industry Canada research. Industry Canada.
- Rabe-Hesketh, Sophia and Anders Skrondal (2013). "Avoiding biased versions of Wooldridge's simple solution to the initial conditions problem". In: *Economics Letters* 120.2, 245, 240

pp. 346–349.

Schreyer, Paul (2000). "High-growth firms and employment". In:

References III

Segarra, Agusti and Mercedes Teruel (2014). "High-growth firms and innovation: an empirical analysis for Spanish firms". In: *Small Business Economics* 43.4, pp. 805–821.
 Storey, David J (1994). Understanding the small business sector. Routledge.
 Wooldridge, Jeffrey M (2005). "Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity". In: *Journal of applied econometrics* 20.1, pp. 39–54.