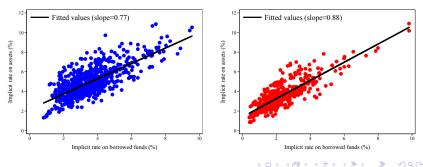

Inefficiency Distribution of the European Banking System

João Oliveira

Banco de Portugal & Nova SBE

October 2017


Disclaimer: the views expressed herein are those of the author and not necessarily those of Banco de Portugal.

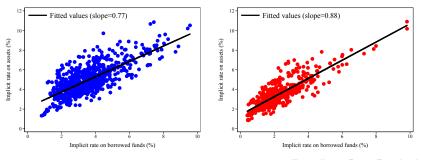
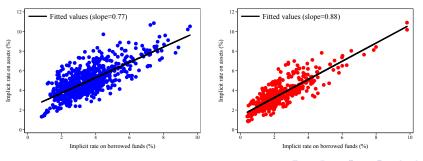
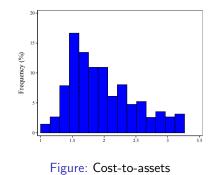

Source: European Central Bank (Consolidated Banking Data). Note: Figures refer to the year ending in the first quarter of 2016.

Figure: Cost-to-income


The outcome variable is correlated with risk

- The outcome variable is correlated with risk
- Different factor prices

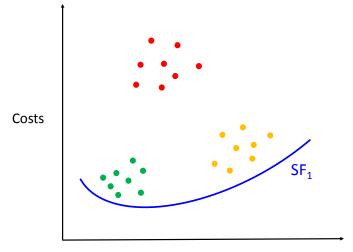


- The outcome variable is correlated with risk
- Different factor prices
- Will consolidation of the banking system reduce average costs? Are there other financial stability consequences of inefficiency?

Method

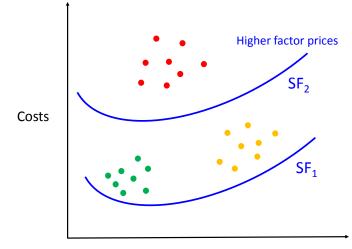
- We apply the method of Boucinha et al. (2013) who use a stochastic frontier analysis (SFA) to study the features of the cost function of the Portuguese banking system
- Banks produce loans and other earning assets and use borrowed funds, physical capital and labour as inputs

Method: Battese & Coelli, 1992 and Battese & Coelli, 1988


$$\ln C_{it} = \delta_0 + \sum_{j=1}^2 \delta_j \ln y_{it} + \delta_F \ln \omega_{Fit} + \frac{u_{it}}{v_{it}} + \nu_{it},$$

- C_{it}: interest plus overheads
- ▶ y_{it}: bank i's production (net loans or other earning assets)
- ω_{Fit}: exogenous cost of funding
- ► u_{it}: bank i's inefficiency. u_i ~ N⁺(µ, σ²_u) (identifying assumption)
- ▶ ν_{it} : random error. $\nu_{it} \sim \mathcal{N}(0, \sigma_{\nu}^2)$ (identifying assumption)

$$CI_{it} = \frac{E[C|u_{it}, X_{it}]}{E[C|u_{it} = 0, X_{it}]}$$


<□ > < @ > < E > < E > E のQ 5/24

Method: SFA

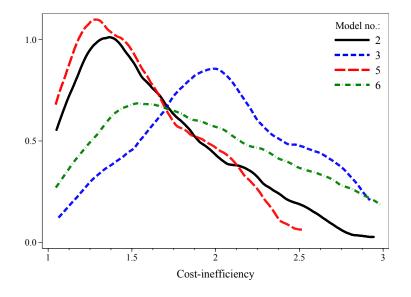
Output

Method: SFA

Output

Method: is the price of funding exogenous?

 ω_{F1}: implicit rate on liabilities (bank-specific) - not exogenous to bank-level efficiency


- Efficiency (unobserved) is correlated with future cash flows
- All else equal, lower future cash flows imply lower probability of repayment
- This raises bank's interest rate
- ω_{F2}: median implicit rate on liabilities (by country) less dependent on a individual bank's performance
- ω_{F3} local money market rate (by currency area) determined by the monetary authority

<□ > < @ > < ≧ > < ≧ > ≧ > り < ? 8/24

Data: Bankscope

- Countries: EU-15 (1995)
- Coverage: 122 banks 45% of UK total assets to 100% of Greek total assets
- Time period: 2000-2013 with a median of 14 periods per institution

Results: Inefficiency distribution(s)


◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ⑦ � ♀ 10/24

Results: Scale economies

	(1)	(2)	(3)	(4)	(5)	(6)
Wald test			0.40			
SE (at the mean)	1.00	0.99	0.97	0.98	0.98	1.00

Table: Scale economies estimates

Results: Scale economies (cross-section)

Limited evidence of scale economies

Robustness: Greene, 2005a

True fixed effects

$$\ln C_{it} = \alpha_i + \beta' X_{it} + u_{it} + \nu_{it} ,$$

where α_i is the bank-specific effect and $\beta' X_{it}$ are the regressors. Here we make the assumptions that: (i) $[x_{it}, \nu_{it}, u_{it}]$ are mutually uncorrelated; (ii) α_i is correlated with the regressors x_{it} and (iii) u_{it} is a random draw from a non-negative distribution

True random effects

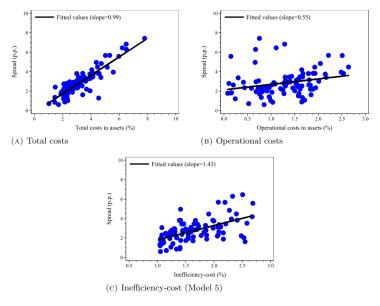
$$\ln C_{it} = \alpha + \beta' X_{it} + w_i + u_{it} + \nu_{it} ,$$

where α is the grand mean, w_i is the bank-specific effect and both w_i and u_{it} and are independent of the regressors and ν_{it}

Robustness: Greene, 2005a

	BC92	TRE	TFE	BC92	TRE
Inefficiency statistics					
Mean	1.74	1.25	1.31	2.26	1.28
Std.dev.	0.69	0.37	0.45	0.98	0.40
$25^{\rm th}$ percentile	1.29	1.05	1.05	1.53	1.04
Median	1.57	1.12	1.15	2.04	1.12
$75^{\rm th}$ percentile	2.08	1.35	1.47	2.82	1.36
Scale economies					
Wald test	0.80	0.27	0.85	0.97	0.46
Scale economies	0.98	1.08	0.98	1.00	1.04

Figure: Alternative model stats


Robustness: Correlations between inefficiency estimates

	Model 3	Model 5	Model 6	TRE ω_{F2}	TFE ω_{F2}	TRE ω_{F3}
Model 3	1.00					
Model 5	0.57	1.00				
Model 6	0.50	0.93	1.00			
TRE ω_{F2}	0.29	0.67	0.59	1.00		
TFE ω_{F2}	0.36	0.69	0.59	0.98	1.00	
TRE ω_{F3}	0.27	0.62	0.62	0.93	0.93	1.00

<ロ > < 母 > < 臣 > < 臣 > < 臣 > ○ < ? 15/24

TABLE 6. Correlation between inefficiency measures

Further consequences of inefficiency

Further consequences of inefficiency

	(A)	(B)	(C)	(D)	(E)
ω_{F2}	1.05^{***}	0.87^{***}	0.46^{***}	1.05^{***}	0.55^{***}
HHI	$(0.20) \\ 4.50^{**}$	(0.13) 5.11^{***}	(0.17) 4.18^{***}	(0.12) 4.54^{***}	(0.11) 4.51^{***}
	(2.08)	(1.63)	(1.38)	(1.29)	(1.48)
Model 2	0.45^{*}				
Model 5	(0.24)	1.17^{***} (0.19)			
Model 6		()	0.93^{***} (0.12)		
TRE ω_{F2}			(0.12)	2.27^{***}	
TRE ω_{F3}				(0.50)	2.31^{***} (0.22)
Obs.	90	90	90	90	90
R ²	0.37	0.67	0.70	0.73	0.73

Bootstrap standard errors in parenthesis

* p < 0.1, ** p < 0.05, *** p < 0.01

Conclusion

- Inefficiency distribution depends on the assumptions made, but correlation of inefficiency estimates between methods is high
- Evidence of scale economies is limited (more plausible for smaller banks). This depends on the funding cost indicator
- We find evidence of a link between credit spreads and inefficiency

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の९ペ 18/24

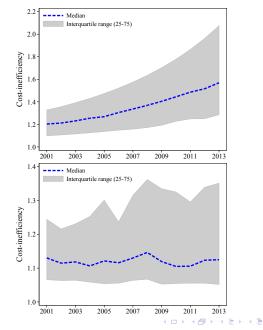
Annex: Baseline Models

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(1)	(2)	(3)	(4)	(5)	(6)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	t	-0.05***	-0.05^{***}	-0.04***	-0.02	-0.02	-0.07**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					(0.02)	(0.02)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\ln y_1$	0.51^{***}	0.51^{***}	0.58^{***}	0.61^{***}		0.47***
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	• -	(0.08)	(0.08)	(0.03)		(0.07)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\ln y_2$	0.47^{***}	0.47^{***}	0.37^{***}	0.35^{***}	0.35^{***}	0.51^{***}
$ \begin{split} & \ln y_1 \times \ln y_1 & 0.09^{***} & 0.09^{***} & 0.07^{***} & 0.07^{***} & 0.07^{***} & 0.07^{***} & 0.09^{***} \\ & (0.03) & (0.03) & (0.02) & (0.03) & (0.02) \\ & \ln y_1 \times \ln y_2 & -0.15^{***} & -0.15^{***} & -0.09^{***} & -0.11^{***} & -0.10^{***} & -0.15^{***} \\ & (0.04) & (0.04) & (0.03) & (0.03) & (0.03) & (0.04) \\ & \ln y_2 \times \ln y_2 & 0.06^{***} & 0.05^{***} & 0.05^{***} & 0.05^{***} & 0.06^{***} \\ & (0.01) & (0.02) & (0.01) & (0.01) & (0.01) & (0.01) \\ & \ln \omega_{F1} & & 0.56^{***} & 0.56^{***} \\ & & (0.04) \\ & \ln \omega_{F3} & & & (0.04) \\ & \mu & 0.29 & 0.00 & 0.71^{***} & 0.44 & 0.00 & 0.62^{**} \\ & & (0.10) & (0.19) & (0.64) & (0.00) \\ & \mu & 0.29 & 0.00 & 0.71^{***} & 0.44 & 0.00 & 0.62^{**} \\ & & (0.51) & (0.00) & (0.19) & (0.64) & (0.00) & (0.30) \\ & \eta & -0.09^{***} & -0.09^{***} & -0.08^{***} & -0.08^{***} & -0.09^{***} \\ & (0.22) & (0.02) & (0.01) & (0.02) & (0.02) & (0.02) \\ & & & & & & & & & & & & \\ & & & & & $					(0.06)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\ln y_1 \times \ln y_1$	0.09***	0.09***	0.06***	0.07***	0.07***	0.09***
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0. 0.	(0.03)	(0.03)				(0.03)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\ln y_1 \times \ln y_2$	-0.15^{***}	-0.15^{***}	-0.09***	-0.11***	-0.10***	-0.15***
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.04)	(0.04)	(0.03)	(0.03)	(0.03)	(0.04)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\ln y_2 \times \ln y_2$	0.06^{***}	0.06***	0.05^{***}	0.05***	0.04***	0.06***
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				(0.01)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\ln \omega_{F1}$			0.64^{***}			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\ln \omega_{F2}$				0.56^{***}	0.56^{***}	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					(0.10)	(0.10)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\ln \omega_{F3}$						0.40^{***}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							(0.09)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	μ	0.29	0.00	0.71^{***}	0.44	0.00	0.62^{**}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				(0.19)		(0.00)	(0.30)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	η	-0.09***	-0.09***	-0.03**	-0.08***	-0.08***	-0.09***
		(0.02)	(0.02)	(0.01)	(0.02)	(0.02)	(0.02)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Obs.	1,243	1,243	1,243	1,243	1,243	1,243
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Log-likelihood	-107.55	-108.02	968.57	126.64	124.20	58.30
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	γ	0.83	0.88	0.87	0.81	0.90	0.84
······································	σ^2	0.33	0.46	0.07	0.20	0.37	0.25
	σ_u	0.52	0.63	0.24	0.40	0.58	0.46
	σ_{ν}	0.24	0.24	0.09	0.19	0.19	0.20

Figure: Regressions: Baseline

Annex: Alternative models

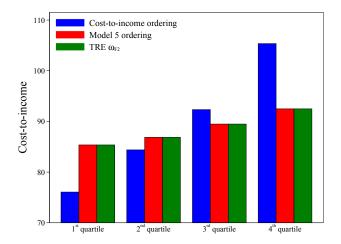
	BC92	TRE	TFE	BC92	TRE
Inefficiency statistics					
Mean	1.74	1.25	1.31	2.26	1.28
Std.dev.	0.69	0.37	0.45	0.98	0.40
$25^{\rm th}$ percentile	1.29	1.05	1.05	1.53	1.04
Median	1.57	1.12	1.15	2.04	1.12
75 th percentile	2.08	1.35	1.47	2.82	1.36
Scale economies					
Wald test	0.80	0.27	0.85	0.97	0.46
Scale economies	0.98	1.08	0.98	1.00	1.04


Figure: Alternative model stats

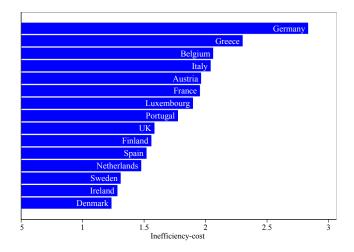
Annex: Alternative models

	BC92	TRE	TFE	BC92	TRE
t	-0.02	-0.04***	-0.03	-0.07**	-0.02
	(0.02)	(0.02)	(0.02)	(0.03)	(0.02)
$\ln y_1$	0.62^{***}	0.70^{***}	0.68^{***}	0.47^{***}	0.66^{***}
	(0.07)	(0.05)	(0.07)	(0.09)	(0.05)
$\ln y_2$	0.35^{***}	0.34^{***}	0.29^{***}	0.51^{***}	0.36^{***}
	(0.05)	(0.04)	(0.06)	(0.07)	(0.04)
$\ln \omega_{F2}$	0.56^{***}	0.46^{***}	0.50^{***}		
	(0.10)	(0.09)	(0.11)		
$\ln y_1 \times \ln y_1$	0.07^{***}	0.08^{***}	0.05^{**}	0.09^{***}	0.08^{***}
	(0.02)	(0.02)	(0.02)	(0.03)	(0.02)
$\ln y_1 \times \ln y_2$	-0.10***	-0.10^{***}	-0.09***	-0.15^{***}	-0.12^{***}
	(0.03)	(0.03)	(0.03)	(0.04)	(0.02)
$\ln y_2 \times \ln y_2$	0.04^{***}	0.05^{***}	0.04^{***}	0.06^{***}	0.05^{***}
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
$\ln \omega_{F3}$				0.40^{***}	0.49^{***}
				(0.09)	(0.08)
μ	0.00			0.62^{**}	
	(0.00)			(0.30)	
η	-0.08***			-0.09***	
	(0.02)			(0.02)	
Obs.	1,243	1,243	1,243	1,243	1,243
Log-likelihood	124.20	194.91	427.79	58.30	135.71
σ_u	0.58	0.16	0.17	0.46	0.18
σ_{ν}	0.19	0.11	0.09	0.20	0.10

Figure: Regressions: Alternative


Robustness: Baseline and true random effects model

୬ ବ ଙ 22/24


ъ

Annex: Cost-to-income ranking

 Extreme quartile medians are closer to the centre of the distribution

Annex: Country rankings

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ▲ ■ ▶ ● ■ ⑦ Q ○ 24/24